IDEAL THEORY IN NEAR-SEMIRINGS AND ITS APPLICATION TO AUTOMATA

C. JENILA ${ }^{1}$ AND P. DHEENA

AbSTRACT. In this paper we develop ideal theory in near-semirings. We use the ideal theory to find the necessary and sufficient conditions for a linear sequential machine to be minimal.

1. Introduction

It has been shown that a homomorphic group-automaton $\mathcal{A}=(Q, A, B, F, G)$, where Q is a state set, A is an input set and B is an output set are groups and $F: Q \times A \rightarrow Q$ and $G: Q \times A \rightarrow B$, the state-transition function and output function respectively, are homomorphisms, is minimal if and only if the $N(\mathcal{A})$-group Q is generated by 0 and does not contain non-zero ideals which are annihilated by g_{0} where $g_{0}: Q \rightarrow B$ ([3], Theorem 9.259). Pilz [3] considered linear sequential machines in which the state set forms a group.

Krishna and Chatterjee [2] considered a generalized linear sequential machine $\mathcal{M}=(Q, A, B, F, G)$ where Q, A, B are semigroups and R-semimodules for some semiring R and $F: Q \times A \rightarrow Q$ and $G: Q \times A \rightarrow B$ are R homomorphisms. They have obtained a necessary condition for the above generalized sequential machine to be minimal. So naturally one is interested to find a necessary and sufficient conditions for the above generalized linear sequential machine to be minimal. To achieve that, we develop ideal theory in a

[^0]Key words and phrases. Near-semiring, ideal, linear sequential machine.
S-semigroup Γ, where S is a near-semiring. Using this ideal theory we find the necessary and sufficient conditions for a generalized linear sequential machine to be minimal. For the terminology and notation used in this paper we refer to Pilz [3], Krishna and Chatterjee [2].

2. NeAr-SEmirings

A near- semiring is a nonempty set S with two binary operations '+'and '. ' such that
(1) $(S,+)$ is a semigroup with identity 0 ,
(2) $(S,$.$) is a semigroup ,$
(3) $(x+y) z=x z+y z$ for all $x, y, z \in S$, and
(4) $0 s=0$ for all $s \in S$.

In the near-semiring $(S,+,$.$) , if (S,$.$) has identity then S$ is a near-semiring with identity. Now we give a natural example of the near-semiring. Let $(\Gamma,+)$ be a semigroup with identity 0 . If $M(\Gamma)$ is the set of all mappings from Γ into Γ then $M(\Gamma)$ is a near-semiring under pointwise addition and composition. $M(\Gamma)$ is neither a ring, nor a near-ring, nor a semiring. A semigroup $(S,+)$ is an inverse semigroup if for each $a \in S$, there exists a unique element $a^{\prime} \in S$ such that $a+a^{\prime}+a=a$ and $a^{\prime}+a+a^{\prime}=a^{\prime}$. Then a^{\prime} is the additive inverse of a. A near-semiring $(S,+,$.$) is an additive inverse near-semiring if (S,+)$ is an inverse semigroup. If A and B are any two non-empty sets of S, we define $A B=\{a b \mid a \in A, b \in B\}$. For $x, y \in S, x=\left(x^{\prime}\right)^{\prime},(x+y)^{\prime}=y^{\prime}+x^{\prime}$ and $(x y)^{\prime}=x^{\prime} y$. We have $E^{+}(S)=\{a \in S: a+a=a\}$.

The properties of additive inverse semiring were obtained by Bandelt and Petrich [1] and the properties of regularity in an additive inverse semiring were obtained by Sen and Maity [4]. They have assumed the three conditions.
(1) $a\left(a+a^{\prime}\right)=\left(a+a^{\prime}\right)$
(2) $a\left(b+b^{\prime}\right)=\left(b+b^{\prime}\right) a$
(3) $a+a\left(b+b^{\prime}\right)=a$.

An element of $M(\Gamma)$ is said to be an affine mapping if it is a sum of an endomorphism and a constant map on Γ. The set of affine mappings on Γ is a subsemigroup of $M(\Gamma)$, denoted by $M_{a f f}(\Gamma)$. Throughout this paper S denotes a near-semiring unless otherwise specified.

3. IDEAL THEORY

Now we develop ideal theory in a S-semigroup Γ.
Definition 3.1. Let S be a near-semiring. A semigroup $(\Gamma,+)$ is said to be an S semigroup if there exists a mapping $(x, \gamma) \mapsto x \gamma$ of $S \times \Gamma \longrightarrow \Gamma$ such that for all $x, y \in S, \gamma \in \Gamma$,
(1) $(x+y) \gamma=x \gamma+y \gamma$,
(2) $(x y) \gamma=x(y \gamma)$, and
(3) $0 \gamma=0_{\Gamma}$, where 0_{Γ} is the zero of Γ.

Definition 3.2. A subsemigroup Δ of ${ }_{S} \Gamma$ with $S \Delta \subseteq \Delta$ is said to be an S subsemigroup of Γ.

Definition 3.3. Let ${ }_{S} \Gamma_{1},{ }_{S} \Gamma_{2}$ be S-semigroups. A map $f:{ }_{S} \Gamma_{1} \rightarrow{ }_{S} \Gamma_{2}$ is called an S-homomorphism if $f\left(\gamma+\gamma_{1}\right)=f(\gamma)+f\left(\gamma_{1}\right)$ and $f(s \gamma)=s f(\gamma)$ for all $\gamma, \gamma_{1} \in$ ${ }_{S} \Gamma_{1}$ and $s \in S$.

Note that $f\left(0_{\Gamma_{1}}\right)=0_{\Gamma_{2}}$.
Definition 3.4. If f is an S-homomorphism of Γ_{1} into Γ_{2}, then the kernel of f is defined by $K=\left\{\gamma_{1} \in \Gamma_{1} \mid f\left(\gamma_{1}\right)=0_{\Gamma_{2}}\right\}$.

Hereafter $(\Gamma,+)$ is assumed to be inverse semigroup with $E^{+}(\Gamma)$ in the center of $(\Gamma,+)$.

Definition 3.5. A non-empty subset I of an S-semigroup Γ is an ideal of ${ }_{S} \Gamma$ ($I \unlhd_{S}$ Г) if
(1) $E^{+}(\Gamma) \subseteq I$,
(2) $i_{1}+i_{2}^{\prime} \in I$ for all $i_{1}, i_{2} \in I$,
(3) $\gamma+i+\gamma^{\prime} \in I$ for all $\gamma \in \Gamma, i \in I$,
(4) $s(i+\gamma)+(s \gamma)^{\prime} \in I$ for all $\gamma \in \Gamma, i \in I$ and $s \in S$,
(5) If $e+\gamma \in$ I implies $\gamma \in I$ for any $e \in E^{+}(\Gamma)$.

Theorem 3.1. If a non-empty subset I of an S-semigroup Γ satisfies the conditions (1), (2), (3), (4) and (5) given above then I is the kernel of an S-homomorphism.

Proof. Define the relation ρ on Γ by $a \rho b$ for all $a, b \in \Gamma$ if and only if $i_{1}+a=i_{2}+b$ for some $i_{1}, i_{2} \in I$. Clearly ρ is reflexive and symmetric. Now we claim that ρ is transitive. Assume that $a \rho b$ and $b \rho c$. Then $i_{1}+a=i_{2}+b$ and $i_{3}+b=i_{4}+c$ for
some $i_{1}, i_{2}, i_{3}, i_{4} \in I$. Now $i_{2}+i_{3}+b=i_{2}+i_{4}+c$. Then $i_{2}+i_{3}+b+b^{\prime}+b=i_{2}+i_{4}+c$. Thus $i_{2}+b+b^{\prime}+i_{3}+b=i_{2}+i_{4}+c$. Hence $i_{1}+a+i_{5}=i_{2}+i_{4}+c$ for some $i_{5} \in I$. Thus $i_{1}+a+a^{\prime}+a+i_{5}=i_{2}+i_{4}+c$. Then $i_{1}+a+i_{5}+a^{\prime}+a=i_{2}+i_{4}+c$. Thus $i_{1}+i_{6}+a=i_{2}+i_{4}+c$ for some $i_{6} \in I$. Hence $a \rho c$.

Let $\Gamma / \rho=\{[a] \mid a \in \Gamma\}$. Let us define ' + ' in Γ / ρ as $[a]+[b]=[a+b]$ and the map $S \times \Gamma / \rho \rightarrow \Gamma / \rho$ as $s[a]=[s a]$ for all $a, b \in \Gamma$ and $s \in S$. Suppose that $[a]=\left[a_{1}\right]$ and $[b]=\left[b_{1}\right]$ for some $a, a_{1}, b, b_{1} \in \Gamma$. Then $i_{1}+a=i_{2}+a_{1}$ and $i_{3}+b=i_{4}+b_{1}$ for some $i_{1}, i_{2}, i_{3}, i_{4} \in I$. Now $i_{1}+a+i_{3}+b=i_{2}+a_{1}+i_{4}+b_{1}$. Thus, $i_{1}+a+a^{\prime}+a+i_{3}+b=$ $i_{2}+a_{1}+a_{1}^{\prime}+a_{1}+i_{4}+b_{1}$. Hence $i_{1}+a+i_{3}+a^{\prime}+a+b=i_{2}+a_{1}+i_{4}+a_{1}^{\prime}+a_{1}+b_{1}$. Then $i_{1}+i_{5}+a+b=i_{2}+i_{6}+a_{1}+b_{1}$ for some $i_{5}, i_{6} \in I$. Thus, $[a+b]=\left[a_{1}+b_{1}\right]$.

Suppose that $[a]=\left[a_{1}\right]$ for some $a, a_{1} \in \Gamma$. Then $i_{1}+a=i_{2}+a_{1}$ for some $i_{1}, i_{2} \in I$. Let $s \in S$. Since $s\left(i_{1}+a\right)+(s a)^{\prime} \in I$ and $s\left(i_{2}+a_{1}\right)+\left(s a_{1}\right)^{\prime} \in I$, we have $s\left(i_{1}+a\right)+(s a)^{\prime}+s a=i_{3}+s a$ and $s\left(i_{2}+a_{1}\right)+\left(s a_{1}\right)^{\prime}+s a_{1}=i_{4}+s a_{1}$ for some $i_{3}, i_{4} \in I$. Let $e=(s a)^{\prime}+s a$ and $e_{1}=\left(s a_{1}\right)^{\prime}+s a_{1}$. Thus, $s\left(i_{1}+a\right)+e=i_{3}+s a$ and $s\left(i_{2}+a_{1}\right)+e_{1}=i_{4}+s a_{1}$. Since $i_{1}+a=i_{2}+a_{1}$, we have $a_{2}+e=i_{3}+s a$ and $a_{2}+e_{1}=i_{4}+s a_{1}$ where $a_{2}=s\left(i_{1}+a\right) \in \Gamma$. Therefore, $a_{2}+e+e_{1}=i_{5}+s a$ and $a_{2}+e+e_{1}=i_{6}+s a_{1}$ for some $i_{5}, i_{6} \in I$. Thus, $i_{5}+s a=i_{6}+s a_{1}$. Hence $[s a]=\left[s a_{1}\right]$. Thus, Γ / ρ is an S-semigroup.

Next we define $\Psi: \Gamma \rightarrow \Gamma / \rho$ as $\Psi(\gamma)=[\gamma], \gamma \in \Gamma$. Clearly Ψ is an S - homomorphism. Let K be the kernel. Take $k \in K$. Then $\Psi(k)=[0]$ implies $[k]=[0]$ implies $k \rho 0$. Hence $i_{1}+k=i_{2}+0$ for some $i_{1}, i_{2} \in I$. It follows that $i_{1}+k=i_{2}$. Then $i_{1}^{\prime}+i_{1}+k=i_{1}^{\prime}+i_{2}$. Let $i_{1}^{\prime}+i_{2}=i_{3}$. Hence $i_{1}^{\prime}+i_{1}+k=i_{3}$ implies $i_{1}^{\prime}+i_{1}+k \in I$. Since $i_{1}^{\prime}+i_{1} \in E^{+}(\Gamma)$, we have $k \in I$. Therefore, $K \subseteq I$. Clearly $I \subseteq K$. Hence $K=I$. Therefore, I is the kernel of an S-homomorphism.

4. Generalized linear sequential machine

Definition 4.1. A semiautomaton is a triple $\boldsymbol{S}=(Q, A, F)$, where Q is a state set, A is an input set and $F: Q \times A \longrightarrow Q$ is a state-transition function. If Q is an inverse semigroup (we always write it additively), we call \boldsymbol{S} an inverse semigroupsemiautomaton and abbreviate this by ISA.

For $q \in Q$ and $a \in A$ we interpret $F(q, a)$ as the new state obtained from the old state q by means of the input a. We extend A to the free monoid A^{*} over A consisting of all finite sequences of elements of A, including the empty sequence \wedge.

We define the function $f_{a}: Q \longrightarrow Q$ by

$$
\begin{aligned}
f_{\wedge}(q) & =q \\
f_{a}(q) & =F(q, a) \text { for all } a \in A \\
f_{x a}(q) & =F\left(f_{x}(q), a\right) \text { for all } x \in A^{*}, a \in A
\end{aligned}
$$

Note that $f_{a_{1} a_{2}}=f_{a_{2}} f_{a_{1}}, a_{1}, a_{2} \in A^{*}$.
Now we discuss two special cases.
The homomorphism case: Let Q and A be additive inverse semigroups with 0 and $F: Q \times A \longrightarrow Q$ be a homomorphism. Now $f_{a}(q)=F(q, a)=F((q, 0)+$ $\left.\left(0_{Q}, a\right)\right)=F(q, 0)+F\left(0_{Q}, a\right)=f_{0}(q)+f_{a}\left(0_{Q}\right)$. Hence $f_{a}=f_{0}+\bar{f}_{a}$, where f_{0} is a homomorphism (i.e. a distributive element in $M(Q)$), \bar{f}_{a} is the map with constant value $f_{a}\left(0_{Q}\right)$. Then \mathbf{S} is called a homomorphic ISA.

Proposition 4.1. For $x=a_{1} a_{2} \ldots a_{n} \in A^{*}$,

$$
f_{x}=f_{0}^{n}+\left(f_{0}^{n-1} \bar{f}_{a_{1}}+f_{0}^{n-2} \bar{f}_{a_{2}}+\ldots+f_{0} \bar{f}_{a_{n-1}}+\bar{f}_{a_{n}}\right)
$$

where $\bar{f}_{a}: Q \longrightarrow Q$ is the constant map with $\bar{f}_{a}(q)=f_{a}\left(0_{Q}\right)$ for all $q \in Q$.
Proof. We prove this result by induction on the length of the string x.
Let $a \in A$ and $q \in Q$. Now $f_{a}(q)=F(q, a)=F(q, 0)+F\left(0_{Q}, a\right)=f_{0}(q)+f_{a}\left(0_{Q}\right)$. Then $f_{a}=f_{0}+\bar{f}_{a}$, so that the result is true for $n=1$. Assume that the result is true for $n=k-1$, i.e., $f_{a_{1} a_{2} \ldots a_{k-1}}=f_{0}^{k-1}+\left(f_{0}^{k-2} \bar{f}_{a_{1}}+f_{0}^{k-3} \bar{f}_{a_{2}}+\ldots+f_{0} \bar{f}_{a_{k-2}}+\bar{f}_{a_{k-1}}\right)$. Now

$$
\begin{aligned}
f_{a_{1} a_{2} \ldots a_{k}} & =f_{a_{k}} f_{a_{1} a_{2} \ldots a_{k-1}}=\left(f_{0}+\bar{f}_{a_{k}}\right) f_{a_{1} a_{2} \ldots a_{k-1}}=f_{0} f_{a_{1} a_{2} \ldots a_{k-1}}+\bar{f}_{a_{k}} f_{a_{1} a_{2} \ldots a_{k-1}} \\
& =f_{0}\left(f_{0}^{k-1}+\left(f_{0}^{k-2} \bar{f}_{a_{1}}+f_{0}^{k-3} \bar{f}_{a_{2}}+\ldots+f_{0} \bar{f}_{a_{k-2}}+\bar{f}_{a_{k-1}}\right)\right)+\bar{f}_{a_{k}} \\
& =f_{0}^{k}+f_{0}^{k-1} \bar{f}_{a_{1}}+f_{0}^{k-2} \bar{f}_{a_{2}}+\ldots+f_{0} \bar{f}_{a_{k-1}}+\bar{f}_{a_{k}} .
\end{aligned}
$$

Hence the result by induction.
The linear case: The linear case is a special case of the homomorphism case in which Q and A are R-semimodules for some semiring R and F is R homomorphism.

Let $M=\left\{f_{x} \mid x \in A^{*}\right\}$. Clearly M is a submonoid of $M_{a f f}(Q)$. Note that $M_{d}=$ $\left\{f_{0}^{n} \mid n \geq 1\right\}$ is the endomorphism part of M.

Definition 4.2. Let $\boldsymbol{S}=(Q, A, F)$ be a ISA. The subnear-semiring $N(\boldsymbol{S})$ of $M_{a f f}(Q)$ generated by M is called the syntactic near-semiring of \boldsymbol{S}.

Theorem 4.1. Every non-zero element of $N(\boldsymbol{S})$ can be written as $\sum_{i=1}^{n} f_{x_{i}}$ for $f_{x_{i}} \in M$.
Proof. Let $f=\sum_{i=1}^{n} f_{x_{i}}$ and $g=\sum_{j=1}^{m} f_{y_{j}}$ where $f_{x_{i}}, f_{y_{j}} \in M$. Clearly $N(\mathbf{S})$ is closed with respect to addition. Now

$$
\begin{aligned}
f g & =\left(\sum_{i=1}^{n} f_{x_{i}}\right)\left(\sum_{j=1}^{m} f_{y_{j}}\right)=\left(\sum_{i=1}^{n}\left(f_{0}^{n_{i}}+\overline{\bar{f}}_{x_{i}}\right)\right)\left(\sum_{j=1}^{m} f_{y_{j}}\right) \\
& =\sum_{i=1}^{n}\left(f_{0}^{n_{i}} \sum_{j=1}^{m} f_{y_{j}}+\overline{\bar{f}}_{x_{i}}\right)=\sum_{i=1}^{n}\left(f_{0}^{n_{i}} \sum_{j=1}^{m-1} f_{y_{j}}+f_{0}^{n_{i}} f_{y_{n}}+\overline{\bar{f}}_{x_{i}}\right) \\
& =\sum_{i=1}^{n}\left(f_{0}^{n_{i}} \sum_{j=1}^{m-1} f_{y_{j}}+\left(f_{0}^{n_{i}}+\overline{\bar{f}}_{x_{i}}\right) f_{y_{n}}\right)=\sum_{i=1}^{n}\left(f_{0}^{n_{i}} \sum_{j=1}^{m-1} f_{y_{j}}+f_{x_{i}} f_{y_{n}}\right) .
\end{aligned}
$$

Since the above expression is a finite sum of elements of $M, N(\mathbf{S})$ is closed with respect to multiplication. Hence the result.

We extend A to the free near-semiring $A^{\#}$ over A. If $a^{\#}=w\left(a_{1}, \ldots a_{n}\right)$ is a word in $A^{\#}$ we define $f_{w\left(a_{1}, \ldots, a_{n}\right)}=w\left(f_{a_{1}}, \ldots, f_{a_{n}}\right)$ and $F^{\#}\left(q, a^{\#}\right)=f_{a^{\#}}(q)$. Thus, we get an extended simultaneous sequential ISA $\mathbf{S}^{\#}=\left(Q, A^{\#}, F^{\#}\right)$.

Definition 4.3. Let $\boldsymbol{S}=(Q, A, F)$ be an ISA and $A^{\#}$ the free near-semiring on A. $q_{1} \in Q$ is accessible from $q_{2} \in Q$ if there is some $\alpha \in A^{\#}$ with $f_{\alpha}\left(q_{2}\right)=q_{1} . S$ is accessible if each state q is accessible from each other state.
$N(\mathbf{S})$ is not only a near-semiring, but it also operates on Q.
Lemma 4.1. Q is an $N(\mathbf{S})$-inverse semigroup.
Proof. Define a map $N(\mathbf{S}) \times Q \longrightarrow Q$ as for any $n=\sum_{i=1}^{n} x_{i}, x_{i} \in M, q \in Q$, $(n, q) \mapsto n q$ which satisfies the following conditions:
(1) $\left(\sum_{i=1}^{n} x_{i}+\sum_{j=1}^{n} y_{j}\right) q=\sum_{i=1}^{n} x_{i}(q)+\sum_{j=1}^{n} y_{j}(q), x_{i}, y_{j} \in M$.
(2) $\left(\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} y_{j}\right) q=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} y_{j}(q)\right), x_{i}, y_{j} \in M$.
(3) $0 q=0_{Q}$.

Proposition 4.2. Let \boldsymbol{S} be an ISA. \boldsymbol{S} is accessible if and only if Q is an $S=N(\boldsymbol{S})-$ inverse semigroup with $S 0_{Q}=Q$.

Proof. Assume that \mathbf{S} is accessible. Then Q is an $N(\mathbf{S})$-inverse semigroup with $S 0_{Q}=Q$. Conversely, suppose that $S 0_{Q}=Q$. Let $q_{1}, q_{2} \in Q$. Since $S 0_{Q}=Q$, there exists $s \in S$ such that $s 0_{Q}=q_{1}$. Now $s\left(0 q_{2}\right)=q_{1}$. Then $(s 0) q_{2}=q_{1}$. Let $s 0=s_{1} \in S$. Hence $s_{1} q_{2}=q_{1}$. Therefore, \mathbf{S} is accessible.

Definition 4.4. An automaton is a quintuple $\mathcal{A}=(Q, A, B, F, G)$, where (Q, A, F) is a semiautomaton, B is an output set and $G: Q \times A \longrightarrow B$ is an output function of \mathcal{A}. If Q is an inverse semigroup, \mathcal{A} is called an inverse semigroup-automaton and is denoted as IA.
\mathcal{A} is called a homomorphic IA if Q, A, B are inverse semigroups and F, G are homomorphisms. \mathcal{A} is called a linear IA or linear automaton or linear sequential machine if Q, A, B are R-semimodules for some semiring R and F, G are R homomorphisms.

Since for every automaton $\mathcal{A}=(Q, A, B, F, G), \mathbf{S}=(Q, A, F)$ is a semiautomaton with the same attributes, we define $N(\mathcal{A})$ as $N(\mathbf{S})$.

5. IDEAL THEORY APPLIED TO MACHINES

Let A^{*} and B^{*} denote the free monoids over A and B respectively. For $q \in Q$, let $s_{q}: A^{*} \longrightarrow B^{*}$ be defined by $s_{q}(\wedge)=\wedge, s_{q}(a)=G(q, a), s_{q}\left(a_{1} a_{2}\right)=$ $s_{q}\left(a_{1}\right) s_{F\left(q, a_{1}\right)}\left(a_{2}\right)$ and proceed inductively with

$$
s_{q}\left(a_{1} a_{2} \ldots a_{n}\right)=s_{q}\left(a_{1} a_{2} \ldots a_{n-1}\right) G\left(F\left(q, a_{1} \ldots a_{n-1}\right), a_{n}\right) .
$$

Definition 5.1. $s_{q}: A^{*} \longrightarrow B^{*}$ is called the sequential (input-output-) function of \mathcal{A} at q.

Define the relation \sim on Q by $q_{1} \sim q_{2}$ if $s_{q_{1}}=s_{q_{2}}$ for all $q_{1}, q_{2} \in Q$.
Proposition 5.1. Let \mathcal{A} be a linear IA. Then \sim is a congruence relation in the $N(\mathcal{A})$-inverse semigroup Q.

Proof. Clearly \sim is reflexive and symmetric. Assume that $q_{1} \sim q_{2}$ and $q_{2} \sim q_{3}$. Thus, $s_{q_{1}}=s_{q_{2}}$ and $s_{q_{2}}=s_{q_{3}}, q_{1}, q_{2}, q_{3} \in Q$. Now $s_{q_{1}}(\wedge)=\wedge=s_{q_{3}}(\wedge), s_{q_{1}}(a)=$ $s_{q_{3}}(a)$ for all $a \in A$,

$$
s_{q_{1}}\left(a_{1} a_{2}\right)=s_{q_{1}}\left(a_{1}\right) G\left(F\left(q_{1}, a_{1}\right), a_{2}\right)=s_{q_{3}}\left(a_{1}\right) G\left(F\left(q_{3}, a_{1}\right), a_{2}\right)=s_{q_{3}}\left(a_{1} a_{2}\right)
$$

for all $a_{1}, a_{2} \in A$, and so on.
Hence $s_{q_{1}}=s_{q_{3}}$. Therefore, $q_{1} \sim q_{3}$. Thus, \sim is transitive.
If $q_{1} \sim q_{2}$ then $s_{q_{1}}=s_{q_{2}}$. Let $q \in Q$. Then $s_{q_{1}+q}(\wedge)=\wedge=s_{q_{2}+q}(\wedge)$.
Let $a \in A$. Now

$$
\begin{aligned}
s_{q_{1}+q}(a) & =G\left(q_{1}+q, a\right)=G\left(q_{1}, a\right)+G\left(q, a^{\prime}\right)+G\left(0_{Q}, a\right) \\
& =G\left(q_{2}, a\right)+G\left(q, a^{\prime}\right)+G\left(0_{Q}, a\right)=G\left(q_{2}+q, a\right)=s_{q_{2}+q}(a)
\end{aligned}
$$

Let $a_{1}, a_{2} \in A$. Now

$$
\begin{aligned}
s_{q_{1}+q}\left(a_{1} a_{2}\right) & =s_{q_{1}+q}\left(a_{1}\right) G\left(F\left(q_{1}+q, a_{1}\right), a_{2}\right) \\
& =s_{q_{2}+q}\left(a_{1}\right) G\left(\left(F\left(q_{1}, a_{1}\right), a_{2}\right)+\left(F\left(q, a_{1}^{\prime}\right), a_{2}^{\prime}\right)+\left(F\left(0_{Q}, a_{1}\right), a_{2}\right)\right) \\
& =s_{q_{2}+q}\left(a_{1}\right) G\left(\left(F\left(q_{2}, a_{1}\right), a_{2}\right)+\left(F\left(q, a_{1}^{\prime}\right), a_{2}^{\prime}\right)+\left(F\left(0_{Q}, a_{1}\right), a_{2}\right)\right) \\
& =s_{q_{2}+q}\left(a_{1}\right) G\left(F\left(q_{2}+q, a_{1}\right), a_{2}\right)=s_{q_{2}+q}\left(a_{1} a_{2}\right),
\end{aligned}
$$

and so on. Hence $s_{q_{1}+q}=s_{q_{2}+q}$. Thus, $q_{1}+q \sim q_{2}+q$.
Let $a \in A$ and $n=f_{a_{1} a_{2} \ldots a_{k}} \in N(\mathcal{A})$. Suppose that $q_{1} \sim q_{2}$. Now,

$$
\begin{aligned}
s_{n q_{1}}(a) & =G\left(n q_{1}, a\right)=G\left(f_{a_{1} a_{2} \ldots a_{k}}\left(q_{1}\right), a\right) \\
& =G\left(F\left(q_{1}, a_{1} a_{2} \ldots a_{k}\right), a\right)=G\left(F\left(q_{2}, a_{1} a_{2} \ldots a_{k}\right), a\right) \\
& =G\left(f_{a_{1} a_{2} \ldots a_{k}}\left(q_{2}\right), a\right)=s_{n q_{2}}(a) .
\end{aligned}
$$

Assume that $s_{n q_{1}}\left(a_{1} a_{2} \ldots a_{n-1}\right)=s_{n q_{2}}\left(a_{1} a_{2} \ldots a_{n-1}\right)$. Now,

$$
\begin{aligned}
& s_{n q_{1}}\left(a_{1} a_{2} \ldots a_{n}\right)=s_{n q_{1}}\left(a_{1} a_{2} \ldots a_{n-1}\right) G\left(F\left(n q_{1}, a_{1} a_{2} \ldots a_{n-1}\right), a_{n}\right) \\
&=s_{n q_{2}}\left(a_{1} a_{2} \ldots a_{n-1}\right) G\left(F\left(f_{a_{1} a_{2} \ldots a_{k}}\left(q_{1}\right), a_{1} a_{2} \ldots a_{n-1}\right), a_{n}\right) \\
&=s_{n q_{2}}\left(a_{1} a_{2} \ldots a_{n-1}\right) G\left(F\left(F\left(q_{1}, a_{1} a_{2} \ldots a_{k}\right), a_{1} a_{2} \ldots a_{n-1}\right), a_{n}\right) \\
&=s_{n q_{2}}\left(a_{1} a_{2} \ldots a_{n-1}\right) G\left(F\left(F\left(q_{2}, a_{1} a_{2} \ldots a_{k}\right), a_{1} a_{2} \ldots a_{n-1}\right), a_{n}\right) \\
&=s_{n q_{2}}\left(a_{1} a_{2} \ldots a_{n-1}\right) G\left(F\left(n q_{2}, a_{1} a_{2} \ldots a_{n-1}\right), a_{n}\right) \\
&=s_{n q_{2}}\left(a_{1} a_{2} \ldots a_{n}\right) .
\end{aligned}
$$

By induction, $s_{n q_{1}}=s_{n q_{2}}$. Hence $n q_{1} \sim n q_{2}$.
Let $Q_{0}=\{q \in Q \mid q \sim 0\}$. Hereafter we assume that $e+q=q+e$ for all $e \in E^{+}(Q), q \in Q$ and $E^{+}(Q) \subseteq Q_{0}$. If Q is a group, the above conditions are trivially satisfied.
Theorem 5.1. If \mathcal{A} is a linear IA then:
(1) $Q_{0}=\{q \in Q \mid q \sim 0\} \unlhd_{N(\mathcal{A})} Q$;
(2) $G(q, 0)=0_{B}$ for all $q \in Q_{0}$.

Proof.
(1) Let $q_{1}, q_{2} \in Q_{0}$. Then $q_{1} \sim 0$ and $q_{2} \sim 0$. Since $q_{2} \sim 0$, we have $q_{2}^{\prime}+q_{2} \sim q_{2}^{\prime}$. Thus, $q_{2}^{\prime} \sim q_{2}^{\prime}+q_{2} \in E^{+}(Q) \subseteq Q_{0}$ implies $q_{2}^{\prime} \sim 0$. Hence $q_{1}+q_{2}^{\prime} \sim 0$. Let $q \in Q$ and
$q_{0} \in Q_{0}$. Since $q_{0} \sim 0$ implies $q_{0}+q^{\prime} \sim q^{\prime}$. Then $q+q_{0}+q^{\prime} \sim q+q^{\prime} \in E^{+}(Q) \subseteq Q_{0}$. Hence $q+q_{0}+q^{\prime} \sim 0$. Let $q \in Q, q_{0} \in Q_{0}$ and $n \in N(\mathcal{A})$. Since $q_{0} \sim 0, q_{0}+q \sim q$. Thus, $n\left(q_{0}+q\right) \sim n q$. Then $n\left(q_{0}+q\right)+(n q)^{\prime} \sim n q+(n q)^{\prime} \in E^{+}(Q) \subseteq Q_{0}$. Hence $n\left(q_{0}+q\right)+(n q)^{\prime} \sim 0$. Assume that $e+q \in Q_{0}$ for some $e \in E^{+}(Q)$. Then $e+q \sim 0$ implies $e+q+q^{\prime} \sim q^{\prime}$. Let $q+q^{\prime}=f$. Then $e+f \sim q^{\prime}$. Since $e+f \in E^{+}(Q) \subseteq Q_{0}$, we have $e+f \sim 0$. Thus, $q^{\prime} \sim 0$ implies $\left(q^{\prime}\right)^{\prime} \sim 0$. Hence $q \sim 0$.
(2) Let $q \in Q_{0}$. Then $q \sim 0$. Now $G(q, 0)=G(0,0)=0_{B}$. Hence $G(q, 0)=0_{B}$ for all $q \in Q_{0}$.

Theorem 5.2. Let \mathcal{A} be a linear IA and $g_{0}: Q \rightarrow B, q \mapsto g_{0}(q)=G(q, 0)$. If $\left(g_{0} f_{0}^{k}\right)(q)=\left(g_{0} f_{0}^{k}\right)\left(q_{1}\right)$ for all $k \geq 0$ then $q \sim q_{1}$.
Proof. We prove this result by induction on the length of the string $a \in A^{*}$. If $k=0$ then $G(q, 0)=G\left(q_{1}, 0\right)$ for all $q, q_{1} \in Q$. Let $a \in A$.

Now, $s_{q}(a)=G(q, a)=G(q, 0)+G\left(0_{Q}, a\right)=G\left(q_{1}, 0\right)+G\left(0_{Q}, a\right)=G\left(q_{1}, a\right)=$ $s_{q_{1}}(a)$. Assume the result is true for $k-1$, i.e. $s_{q}\left(a_{1} a_{2} \ldots a_{k-1}\right)=s_{q_{1}}\left(a_{1} a_{2} \ldots a_{k-1}\right)$. Then

$$
\begin{aligned}
& G\left(f_{a_{1} a_{2} \ldots a_{k-1}}(q), a_{k}\right)=G\left(\left(f_{0}^{k-1}+\left(f_{0}^{k-2} \bar{f}_{a_{1}}+\ldots+\bar{f}_{a_{k-1}}\right)\right)(q), a_{k}\right) \\
& \quad=G\left(f_{0}^{k-1}(q), 0\right)+G\left(\left(f_{0}^{k-2} \bar{f}_{a_{1}}+\ldots+\bar{f}_{a_{k-1}}\right)(q), 0\right)+G\left(0_{Q}, a_{k}\right) \\
& \quad=G\left(f_{0}^{k-1}\left(q_{1}\right), 0\right)+G\left(f_{0}^{k-2} \bar{f}_{a_{1}}+\ldots+\bar{f}_{a_{k-1}}\left(q_{1}\right), 0\right)+G\left(0_{Q}, a_{k}\right) \\
& \quad=G\left(f_{a_{1} a_{2} \ldots a_{k-1}}\left(q_{1}\right), a_{k}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& s_{q}\left(a_{1} a_{2} \ldots a_{k}\right)=s_{q}\left(a_{1} a_{2} \ldots a_{k-1}\right) G\left(F\left(q, a_{1} a_{2} \ldots a_{k-1}\right), a_{k}\right) \\
& \quad=s_{q_{1}}\left(a_{1} a_{2} \ldots a_{k-1}\right) G\left(f_{a_{1} a_{2} \ldots a_{k-1}}(q), a_{k}\right) \\
& \quad=s_{q_{1}}\left(a_{1} a_{2} \ldots a_{k-1}\right) G\left(f_{a_{1} a_{2} \ldots a_{k-1}}\left(q_{1}\right), a_{k}\right) \\
& \quad=s_{q_{1}}\left(a_{1} a_{2} \ldots a_{k}\right) .
\end{aligned}
$$

Hence $q \sim q_{1}$.
Definition 5.2. An IA $\mathcal{A}=(Q, A, B, F, G)$ is reduced if \sim is the equality. If \mathcal{A} is accessible (i.e. if (Q, A, F) is accessible) and reduced then \mathcal{A} is called minimal.

Theorem 5.3. Let \mathcal{A} be a linear IA. Then \mathcal{A} is reduced if and only if ${ }_{N(\mathcal{A})} Q$ has no non-zero ideals P with $g_{0} P=\left\{0_{B}\right\}$.

Proof. Assume that ${ }_{N(\mathcal{A})} Q$ has no such ideals. By Theorem 5.1, Q_{0} is an ideal of $N(\mathcal{A}) Q$ with $g_{0} Q_{0}=\left\{0_{B}\right\}$. Then $Q_{0}=\{0\}$. Hence \mathcal{A} is reduced.

Conversely suppose that \mathcal{A} is reduced and that $P \unlhd_{N(\mathcal{A})} Q$ has $g_{0} P=\left\{0_{B}\right\}$. Then $G(p, 0)=g_{0}(p)=0_{B}$ for all $p \in P$. Since $f_{0}^{k}(p+0)+\left(f_{0}^{k}(0)\right)^{\prime} \in P$ for all
$p \in P$, we have $f_{0}^{k}(p) \in P$. Then $\left(g_{0} f_{0}^{k}\right)(p)=0_{B}$ for all $p \in P, k \geq 0$. Therefore, $\left(g_{0} f_{0}^{k}\right)(p)=0_{B}=\left(g_{0} f_{0}^{k}\right)\left(0_{Q}\right)$ for all $k \geq 0$. Thus, $p \sim 0_{Q}$ by Theorem 5.2. Hence $p=0_{Q}$. Then $P=\left\{0_{Q}\right\}$.

From Proposition 4.2 and Theorem 5.3 we get
Theorem 5.4. Let \mathcal{A} be a linear IA. Then \mathcal{A} is minimal if and only if ${ }_{N(\mathcal{A})} Q$ is zero generated and does not contain non-zero ideals which are annihilated by g_{0}.

Thus, in an Automata, if Q is not necessarily group but inverse semigroup, we have extended the result obtained for group Automata to check the minimality.

References

[1] H. J. Bandelt, Petrich: Subdirect products of rings and distributive lattices, Proc. Edinburgh Math. Soc., 25 (1982), 155-171.
[2] K. V. Krishna, N. Chatterjee: A necessary condition to test the minimality of generalized linear sequential machines using the theory of near-semirings, Algebra and Discrete Mathematics, 3 (2005), 30-45.
[3] G. PilZ: Near-rings, North-Holland, Amsterdam, 1983.
[4] M. K. Sen, S. K. MaitY: Regular additively inverse semirings, Acta Math Univ. Comenianae, $\operatorname{LXXV}(1)$ (2006), 137-146.

Department of Mathematics
Holy Cross College (Autonomous)
NAGERCOIL - 629 004, INDIA
Email address: jenilac201@gmail.com
Department of Mathematics
Annamalai University
AnNAmALAINAGAR - 608 002, IndiA
Email address: dheenap@yahoo.com

[^0]: ${ }^{1}$ corresponding author
 2010 Mathematics Subject Classification. 16Y30, $16 Y 60$.

