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IDEAL THEORY IN NEAR-SEMIRINGS AND ITS APPLICATION TO
AUTOMATA

C. JENILA1 AND P. DHEENA

ABSTRACT. In this paper we develop ideal theory in near-semirings. We use the
ideal theory to find the necessary and sufficient conditions for a linear sequen-
tial machine to be minimal.

1. INTRODUCTION

It has been shown that a homomorphic group-automaton A = (Q,A,B, F,G),

where Q is a state set, A is an input set and B is an output set are groups
and F : Q × A → Q and G : Q × A → B, the state-transition function and
output function respectively, are homomorphisms, is minimal if and only if the
N(A)-group Q is generated by 0 and does not contain non-zero ideals which are
annihilated by g0 where g0 : Q→ B ( [3], Theorem 9.259). Pilz [3] considered
linear sequential machines in which the state set forms a group.

Krishna and Chatterjee [2] considered a generalized linear sequential ma-
chine M = (Q,A,B, F,G) where Q,A,B are semigroups and R-semimodules
for some semiring R and F : Q × A → Q and G : Q × A → B are R-
homomorphisms. They have obtained a necessary condition for the above gen-
eralized sequential machine to be minimal. So naturally one is interested to
find a necessary and sufficient conditions for the above generalized linear se-
quential machine to be minimal. To achieve that, we develop ideal theory in a
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S-semigroup Γ, where S is a near-semiring. Using this ideal theory we find the
necessary and sufficient conditions for a generalized linear sequential machine
to be minimal. For the terminology and notation used in this paper we refer to
Pilz [3], Krishna and Chatterjee [2].

2. NEAR-SEMIRINGS

A near- semiring is a nonempty set S with two binary operations ‘+’and ‘.’ such
that

(1) (S,+) is a semigroup with identity 0,
(2) (S, .) is a semigroup ,
(3) (x+ y)z = xz + yz for all x, y, z ∈ S, and
(4) 0s = 0 for all s ∈ S.

In the near-semiring (S,+, .), if (S, .) has identity then S is a near-semiring with
identity. Now we give a natural example of the near-semiring. Let (Γ,+) be
a semigroup with identity 0. If M(Γ) is the set of all mappings from Γ into Γ

then M(Γ) is a near-semiring under pointwise addition and composition. M(Γ)

is neither a ring, nor a near-ring, nor a semiring. A semigroup (S,+) is an
inverse semigroup if for each a ∈ S, there exists a unique element a′ ∈ S such
that a + a′ + a = a and a′ + a + a′ = a′. Then a′ is the additive inverse of
a. A near-semiring (S,+, .) is an additive inverse near-semiring if (S,+) is an
inverse semigroup. If A and B are any two non-empty sets of S, we define
AB = {ab|a ∈ A, b ∈ B}. For x, y ∈ S, x = (x′)′, (x+y)′ = y′+x′ and (xy)′ = x′y.
We have E+(S) = {a ∈ S : a+ a = a} .

The properties of additive inverse semiring were obtained by Bandelt and
Petrich [1] and the properties of regularity in an additive inverse semiring were
obtained by Sen and Maity [4]. They have assumed the three conditions.

(1) a(a+ a′) = (a+ a′)

(2) a(b+ b′) = (b+ b′)a

(3) a+ a(b+ b′) = a.

An element of M(Γ) is said to be an affine mapping if it is a sum of an en-
domorphism and a constant map on Γ. The set of affine mappings on Γ is a
subsemigroup of M(Γ), denoted by Maff (Γ). Throughout this paper S denotes
a near-semiring unless otherwise specified.
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3. IDEAL THEORY

Now we develop ideal theory in a S-semigroup Γ.

Definition 3.1. Let S be a near-semiring. A semigroup (Γ,+) is said to be an S-
semigroup if there exists a mapping (x, γ) 7→ xγ of S × Γ −→ Γ such that for all
x, y ∈ S, γ ∈ Γ,

(1) (x+ y)γ = xγ + yγ,

(2) (xy)γ = x(yγ), and
(3) 0γ = 0Γ, where 0Γ is the zero of Γ.

Definition 3.2. A subsemigroup ∆ of SΓ with S∆ ⊆ ∆ is said to be an S-
subsemigroup of Γ.

Definition 3.3. Let SΓ1, SΓ2 be S-semigroups. A map f : SΓ1 → SΓ2 is called an
S-homomorphism if f(γ + γ1) = f(γ) + f(γ1) and f(sγ) = sf(γ) for all γ, γ1 ∈
SΓ1 and s ∈ S.

Note that f(0Γ1) = 0Γ2 .

Definition 3.4. If f is an S-homomorphism of Γ1 into Γ2, then the kernel of f is
defined by K = {γ1 ∈ Γ1|f(γ1) = 0Γ2} .

Hereafter (Γ,+) is assumed to be inverse semigroup with E+(Γ) in the center
of (Γ,+).

Definition 3.5. A non-empty subset I of an S-semigroup Γ is an ideal of SΓ (I /S
Γ) if

(1) E+(Γ) ⊆ I,

(2) i1 + i
′
2 ∈ I for all i1, i2 ∈ I,

(3) γ + i+ γ
′ ∈ I for all γ ∈ Γ, i ∈ I,

(4) s(i+ γ) + (sγ)
′ ∈ I for all γ ∈ Γ, i ∈ I and s ∈ S,

(5) If e+ γ ∈ I implies γ ∈ I for any e ∈ E+(Γ).

Theorem 3.1. If a non-empty subset I of an S-semigroup Γ satisfies the conditions
(1), (2), (3), (4) and (5) given above then I is the kernel of an S-homomorphism.

Proof. Define the relation ρ on Γ by aρb for all a, b ∈ Γ if and only if i1 +a = i2 +b

for some i1, i2 ∈ I. Clearly ρ is reflexive and symmetric. Now we claim that ρ is
transitive. Assume that aρb and bρc. Then i1 + a = i2 + b and i3 + b = i4 + c for
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some i1, i2, i3, i4 ∈ I. Now i2+i3+b = i2+i4+c. Then i2+i3+b+b
′
+b = i2+i4+c.

Thus i2 + b + b
′
+ i3 + b = i2 + i4 + c. Hence i1 + a + i5 = i2 + i4 + c for some

i5 ∈ I. Thus i1 + a+ a
′
+ a+ i5 = i2 + i4 + c. Then i1 + a+ i5 + a

′
+ a = i2 + i4 + c.

Thus i1 + i6 + a = i2 + i4 + c for some i6 ∈ I. Hence aρc.
Let Γ/ρ = {[a] |a ∈ Γ} . Let us define ‘+’ in Γ/ρ as [a]+[b] = [a+ b] and the map

S×Γ/ρ → Γ/ρ as s [a] = [sa] for all a, b ∈ Γ and s ∈ S. Suppose that [a] = [a1] and
[b] = [b1] for some a, a1, b, b1 ∈ Γ. Then i1 +a = i2 +a1 and i3 +b = i4 +b1 for some
i1, i2, i3, i4 ∈ I. Now i1 +a+ i3 +b = i2 +a1 + i4 +b1. Thus, i1 +a+a

′
+a+ i3 +b =

i2 +a1 +a
′
1 +a1 + i4 + b1. Hence i1 +a+ i3 +a

′
+a+ b = i2 +a1 + i4 +a

′
1 +a1 + b1.

Then i1 + i5 +a+ b = i2 + i6 +a1 + b1 for some i5, i6 ∈ I. Thus, [a+ b] = [a1 + b1] .

Suppose that [a] = [a1] for some a, a1 ∈ Γ. Then i1 + a = i2 + a1 for some
i1, i2 ∈ I. Let s ∈ S. Since s(i1 +a)+(sa)

′ ∈ I and s(i2 +a1)+(sa1)
′ ∈ I, we have

s(i1 + a) + (sa)
′
+ sa = i3 + sa and s(i2 + a1) + (sa1)

′
+ sa1 = i4 + sa1 for some

i3, i4 ∈ I. Let e = (sa)
′
+ sa and e1 = (sa1)

′
+ sa1. Thus, s(i1 + a) + e = i3 + sa

and s(i2 + a1) + e1 = i4 + sa1. Since i1 + a = i2 + a1, we have a2 + e = i3 + sa

and a2 + e1 = i4 + sa1 where a2 = s(i1 + a) ∈ Γ. Therefore, a2 + e+ e1 = i5 + sa

and a2 + e + e1 = i6 + sa1 for some i5, i6 ∈ I. Thus, i5 + sa = i6 + sa1. Hence
[sa] = [sa1] . Thus, Γ/ρ is an S-semigroup.

Next we define Ψ : Γ → Γ/ρ as Ψ(γ) = [γ], γ ∈ Γ. Clearly Ψ is an S- homo-
morphism. Let K be the kernel. Take k ∈ K. Then Ψ(k) = [0] implies [k] = [0]

implies kρ0. Hence i1 + k = i2 + 0 for some i1, i2 ∈ I. It follows that i1 + k = i2.

Then i′1+i1+k = i
′
1+i2. Let i′1+i2 = i3. Hence i′1+i1+k = i3 implies i′1+i1+k ∈ I.

Since i′1 + i1 ∈ E+(Γ), we have k ∈ I. Therefore, K ⊆ I. Clearly I ⊆ K. Hence
K = I. Therefore, I is the kernel of an S-homomorphism. �

4. GENERALIZED LINEAR SEQUENTIAL MACHINE

Definition 4.1. A semiautomaton is a triple S = (Q,A, F ), where Q is a state set,
A is an input set and F : Q × A −→ Q is a state-transition function. If Q is an
inverse semigroup (we always write it additively), we call S an inverse semigroup-
semiautomaton and abbreviate this by ISA.

For q ∈ Q and a ∈ A we interpret F (q, a) as the new state obtained from the
old state q by means of the input a. We extend A to the free monoid A∗ over A
consisting of all finite sequences of elements of A, including the empty sequence
∧.
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We define the function fa : Q −→ Q by

f∧(q) = q,

fa(q) = F (q, a) for all a ∈ A

fxa(q) = F (fx(q), a) for all x ∈ A∗, a ∈ A.

Note that fa1a2 = fa2fa1 , a1, a2 ∈ A∗.
Now we discuss two special cases.
The homomorphism case: Let Q and A be additive inverse semigroups with

0 and F : Q × A −→ Q be a homomorphism. Now fa(q) = F (q, a) = F ((q, 0) +

(0Q, a)) = F (q, 0) + F (0Q, a) = f0(q) + fa(0Q). Hence fa = f0 + fa, where f0

is a homomorphism (i.e. a distributive element in M(Q)), fa is the map with
constant value fa(0Q). Then S is called a homomorphic ISA.

Proposition 4.1. For x = a1a2...an ∈ A∗,

fx = fn0 + (fn−1
0 fa1 + fn−2

0 fa2 + ...+ f0fan−1
+ fan),

where fa : Q −→ Q is the constant map with fa(q) = fa(0Q) for all q ∈ Q.

Proof. We prove this result by induction on the length of the string x.
Let a ∈ A and q ∈ Q. Now fa(q) = F (q, a) = F (q, 0)+F (0Q, a) = f0(q)+fa(0Q).

Then fa = f0 + fa, so that the result is true for n = 1. Assume that the result is
true for n = k−1, i.e., fa1a2...ak−1

= fk−1
0 +(fk−2

0 fa1+fk−3
0 fa2+...+f0fak−2

+fak−1
).

Now

fa1a2...ak = fakfa1a2...ak−1
= (f0 + fak)fa1a2...ak−1

= f0fa1a2...ak−1
+ fakfa1a2...ak−1

= f0(fk−1
0 + (fk−2

0 fa1 + fk−3
0 fa2 + . . .+ f0fak−2

+ fak−1
)) + fak

= fk0 + fk−1
0 fa1 + fk−2

0 fa2 + . . .+ f0fak−1
+ fak .

Hence the result by induction. �

The linear case: The linear case is a special case of the homomorphism
case in which Q and A are R-semimodules for some semiring R and F is R-
homomorphism.

Let M = {fx|x ∈ A∗}. Clearly M is a submonoid of Maff (Q). Note that Md =

{fn0 |n ≥ 1} is the endomorphism part of M.

Definition 4.2. Let S = (Q,A, F ) be a ISA. The subnear-semiringN(S) ofMaff (Q)

generated by M is called the syntactic near-semiring of S.
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Theorem 4.1. Every non-zero element of N(S) can be written as
n∑
i=1

fxi for

fxi ∈M.

Proof. Let f =
n∑
i=1

fxi and g =
m∑
j=1

fyj where fxi , fyj ∈ M. Clearly N(S) is closed

with respect to addition. Now

fg =

(
n∑
i=1

fxi

)(
m∑
j=1

fyj

)
=

(
n∑
i=1

(fni
0 + fxi)

)(
m∑
j=1

fyj

)

=
n∑
i=1

(fni
0

m∑
j=1

fyj + fxi) =
n∑
i=1

(fni
0

m−1∑
j=1

fyj + fni
0 fyn + fxi)

=
n∑
i=1

(fni
0

m−1∑
j=1

fyj + (fni
0 + fxi)fyn) =

n∑
i=1

(fni
0

m−1∑
j=1

fyj + fxifyn).

Since the above expression is a finite sum of elements of M, N(S) is closed with
respect to multiplication. Hence the result. �

We extend A to the free near-semiring A# over A. If a# = w(a1, . . . an) is a
word in A# we define fw(a1,...,an) = w(fa1 , . . . , fan) and F#(q, a#) = fa#(q). Thus,
we get an extended simultaneous sequential ISA S# = (Q,A#, F#).

Definition 4.3. Let S = (Q,A, F ) be an ISA and A# the free near-semiring on A.
q1 ∈ Q is accessible from q2 ∈ Q if there is some α ∈ A# with fα(q2) = q1. S is
accessible if each state q is accessible from each other state.

N(S) is not only a near-semiring, but it also operates on Q.

Lemma 4.1. Q is an N(S)-inverse semigroup.

Proof. Define a map N(S) × Q −→ Q as for any n =
n∑
i=1

xi, xi ∈ M, q ∈ Q,

(n, q) 7→ nq which satisfies the following conditions:

(1)

(
n∑
i=1

xi +
n∑
j=1

yj

)
q =

n∑
i=1

xi(q) +
n∑
j=1

yj(q), xi, yj ∈M.

(2)

(
n∑
i=1

xi
n∑
j=1

yj

)
q =

n∑
i=1

xi(
n∑
j=1

yj(q)), xi, yj ∈M.

(3) 0q = 0Q.

�
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Proposition 4.2. Let S be an ISA. S is accessible if and only if Q is an S = N(S)-
inverse semigroup with S0Q = Q.

Proof. Assume that S is accessible. Then Q is an N(S)-inverse semigroup with
S0Q = Q. Conversely, suppose that S0Q = Q. Let q1, q2 ∈ Q. Since S0Q = Q,

there exists s ∈ S such that s0Q = q1. Now s(0q2) = q1. Then (s0)q2 = q1. Let
s0 = s1 ∈ S. Hence s1q2 = q1. Therefore, S is accessible. �

Definition 4.4. An automaton is a quintupleA = (Q,A,B, F,G), where (Q,A, F )

is a semiautomaton, B is an output set and G : Q×A −→ B is an output function
of A. If Q is an inverse semigroup, A is called an inverse semigroup-automaton
and is denoted as IA.

A is called a homomorphic IA if Q,A,B are inverse semigroups and F,G are
homomorphisms. A is called a linear IA or linear automaton or linear sequential
machine if Q,A,B are R-semimodules for some semiring R and F,G are R-
homomorphisms.

Since for every automaton A = (Q,A,B, F,G), S = (Q,A, F ) is a semiau-
tomaton with the same attributes, we define N(A) as N(S).

5. IDEAL THEORY APPLIED TO MACHINES

Let A∗ and B∗ denote the free monoids over A and B respectively. For
q ∈ Q, let sq : A∗ −→ B∗ be defined by sq(∧) = ∧, sq(a) = G(q, a), sq(a1a2) =

sq(a1)sF (q,a1)(a2) and proceed inductively with

sq(a1a2 . . . an) = sq(a1a2 . . . an−1)G(F (q, a1 . . . an−1), an).

Definition 5.1. sq : A∗ −→ B∗ is called the sequential (input-output-) function of
A at q.

Define the relation ∼ on Q by q1 ∼ q2 if sq1 = sq2 for all q1, q2 ∈ Q.

Proposition 5.1. Let A be a linear IA. Then ∼ is a congruence relation in the
N(A)-inverse semigroup Q.

Proof. Clearly ∼ is reflexive and symmetric. Assume that q1 ∼ q2 and q2 ∼ q3.

Thus, sq1 = sq2 and sq2 = sq3 , q1, q2, q3 ∈ Q. Now sq1(∧) = ∧ = sq3(∧), sq1(a) =

sq3(a) for all a ∈ A,

sq1(a1a2) = sq1(a1)G(F (q1, a1), a2) = sq3(a1)G(F (q3, a1), a2) = sq3(a1a2)
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for all a1, a2 ∈ A, and so on.
Hence sq1 = sq3 . Therefore, q1 ∼ q3. Thus, ∼ is transitive.
If q1 ∼ q2 then sq1 = sq2 . Let q ∈ Q. Then sq1+q(∧) = ∧ = sq2+q(∧).

Let a ∈ A. Now
sq1+q(a) = G(q1 + q, a) = G(q1, a) +G(q, a

′
) +G(0Q, a)

= G(q2, a) +G(q, a
′
) +G(0Q, a) = G(q2 + q, a) = sq2+q(a).

Let a1, a2 ∈ A. Now
sq1+q(a1a2) = sq1+q(a1)G(F (q1 + q, a1), a2)

= sq2+q(a1)G((F (q1, a1), a2) + (F (q, a
′
1), a

′
2) + (F (0Q, a1), a2))

= sq2+q(a1)G((F (q2, a1), a2) + (F (q, a
′
1), a

′
2) + (F (0Q, a1), a2))

= sq2+q(a1)G(F (q2 + q, a1), a2) = sq2+q(a1a2),
and so on. Hence sq1+q = sq2+q. Thus, q1 + q ∼ q2 + q.

Let a ∈ A and n = fa1a2...ak ∈ N(A). Suppose that q1 ∼ q2. Now,
snq1(a) = G(nq1, a) = G(fa1a2...ak(q1), a)

= G(F (q1, a1a2 . . . ak), a) = G(F (q2, a1a2 . . . ak), a)

= G(fa1a2...ak(q2), a) = snq2(a).

Assume that snq1(a1a2 . . . an−1) = snq2(a1a2 . . . an−1). Now,
snq1(a1a2 . . . an) = snq1(a1a2 . . . an−1)G(F (nq1, a1a2 . . . an−1), an)

= snq2(a1a2 . . . an−1)G(F (fa1a2...ak(q1), a1a2 . . . an−1), an)

= snq2(a1a2 . . . an−1)G(F (F (q1, a1a2 . . . ak), a1a2 . . . an−1), an)

= snq2(a1a2 . . . an−1)G(F (F (q2, a1a2 . . . ak), a1a2 . . . an−1), an)

= snq2(a1a2 . . . an−1)G(F (nq2, a1a2 . . . an−1), an)

= snq2(a1a2 . . . an).

By induction, snq1 = snq2 . Hence nq1 ∼ nq2. �

Let Q0 = {q ∈ Q|q ∼ 0}. Hereafter we assume that e + q = q + e for all
e ∈ E+(Q), q ∈ Q and E+(Q) ⊆ Q0. If Q is a group, the above conditions are
trivially satisfied.

Theorem 5.1. If A is a linear IA then:

(1) Q0 = {q ∈ Q|q ∼ 0} /N(A) Q;
(2) G(q, 0) = 0B for all q ∈ Q0.

Proof.
(1) Let q1, q2 ∈ Q0. Then q1 ∼ 0 and q2 ∼ 0. Since q2 ∼ 0, we have q′2 + q2 ∼ q

′
2.

Thus, q′2 ∼ q
′
2 +q2 ∈ E+(Q) ⊆ Q0 implies q′2 ∼ 0. Hence q1 +q

′
2 ∼ 0. Let q ∈ Q and
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q0 ∈ Q0. Since q0 ∼ 0 implies q0 +q
′ ∼ q

′
. Then q+q0 +q

′ ∼ q+q
′ ∈ E+(Q) ⊆ Q0.

Hence q+ q0 + q
′ ∼ 0. Let q ∈ Q , q0 ∈ Q0 and n ∈ N(A). Since q0 ∼ 0, q0 + q ∼ q.

Thus, n(q0 + q) ∼ nq. Then n(q0 + q) + (nq)
′ ∼ nq + (nq)

′ ∈ E+(Q) ⊆ Q0. Hence
n(q0 +q)+(nq)

′ ∼ 0. Assume that e+q ∈ Q0 for some e ∈ E+(Q). Then e+q ∼ 0

implies e+ q+ q
′ ∼ q

′
. Let q+ q

′
= f. Then e+f ∼ q

′
. Since e+f ∈ E+(Q) ⊆ Q0,

we have e+ f ∼ 0. Thus, q′ ∼ 0 implies (q
′
)
′ ∼ 0. Hence q ∼ 0.

(2) Let q ∈ Q0. Then q ∼ 0. Now G(q, 0) = G(0, 0) = 0B. Hence G(q, 0) = 0B
for all q ∈ Q0. �

Theorem 5.2. Let A be a linear IA and g0 : Q → B, q 7→ g0(q) = G(q, 0). If
(g0f

k
0 )(q) = (g0f

k
0 )(q1) for all k ≥ 0 then q ∼ q1.

Proof. We prove this result by induction on the length of the string a ∈ A∗. If
k = 0 then G(q, 0) = G(q1, 0) for all q, q1 ∈ Q. Let a ∈ A.

Now, sq(a) = G(q, a) = G(q, 0) + G(0Q, a) = G(q1, 0) + G(0Q, a) = G(q1, a) =

sq1(a). Assume the result is true for k−1, i.e. sq(a1a2 . . . ak−1) = sq1(a1a2 . . . ak−1).

Then
G(fa1a2...ak−1

(q), ak) = G
(

(fk−1
0 + (fk−2

0 fa1 + . . .+ fak−1
))(q), ak

)
= G(fk−1

0 (q), 0) +G
(

(fk−2
0 fa1 + . . .+ fak−1

)(q), 0
)

+G(0Q, ak)

= G(fk−1
0 (q1), 0) +G(fk−2

0 fa1 + . . .+ fak−1
(q1), 0) +G(0Q, ak)

= G(fa1a2...ak−1
(q1), ak).

Now,
sq(a1a2 . . . ak) = sq(a1a2 . . . ak−1)G(F (q, a1a2 . . . ak−1), ak)

= sq1(a1a2 . . . ak−1)G(fa1a2...ak−1
(q), ak)

= sq1(a1a2 . . . ak−1)G(fa1a2...ak−1
(q1), ak)

= sq1(a1a2 . . . ak).

Hence q ∼ q1. �

Definition 5.2. An IA A = (Q,A,B, F,G) is reduced if ∼ is the equality. If A is
accessible (i.e. if (Q,A, F ) is accessible) and reduced then A is called minimal.

Theorem 5.3. Let A be a linear IA. Then A is reduced if and only if N(A)Q has no
non-zero ideals P with g0P = {0B}.

Proof. Assume that N(A)Q has no such ideals. By Theorem 5.1, Q0 is an ideal of

N(A)Q with g0Q0 = {0B}. Then Q0 = {0}. Hence A is reduced.
Conversely suppose that A is reduced and that P /N(A) Q has g0P = {0B}.

Then G(p, 0) = g0(p) = 0B for all p ∈ P. Since fk0 (p + 0) + (fk0 (0))
′ ∈ P for all
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p ∈ P, we have fk0 (p) ∈ P. Then (g0f
k
0 )(p) = 0B for all p ∈ P, k ≥ 0. Therefore,

(g0f
k
0 )(p) = 0B = (g0f

k
0 )(0Q) for all k ≥ 0. Thus, p ∼ 0Q by Theorem 5.2. Hence

p = 0Q. Then P = {0Q}. �

From Proposition 4.2 and Theorem 5.3 we get

Theorem 5.4. Let A be a linear IA. Then A is minimal if and only if N(A)Q is zero
generated and does not contain non-zero ideals which are annihilated by g0.

Thus, in an Automata, if Q is not necessarily group but inverse semigroup, we
have extended the result obtained for group Automata to check the minimality.
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